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Numerical Analysis of Surface-Wave Scattering
by Finite Periodic Notches in a Ground
Plane

KAZUNORI UCHIDA, MEMBER, IEEE

Abstract — Surface-wave scattering by finite periodic notches loaded in a
ground plane is investigated in terms of a full-wave theory. The analytical
method presented is based on a spectral-domain analysis where the sam-
pling theorem is applied in order to discretize the final equation to be
solved. Numerical calculations are carried out for reflected, transmitted,
and radiated waves. The numerical results show that maximum reflection
and radiation occur at frequencies somewhat different from those expected
from the Bragg condition based on a first-order perturbation theory.

I. INTRODUCTION

ERIODIC LOADING in various kinds of waveguides

exhibits an interesting phenomenon called Bragg dif-
fraction. Because of the nonuniform nature of the guides,
mode conversion into various other modes occurs. When
the periodicity is chosen such that the Bragg condition is
satisfied for two specific modes, the mode conversion
between them is prominent while that between any others
is negligibly small. Therefore, if one of them is an incident
surface wave and the other is a reflected wave, the mecha-
nism suggests the possibility of devising an effective mode
filter by such periodic loading of the dielectric guide. For
an effective leaky wave antenna, the situation is much the
same if the second mode is the radiation field with regard
to an open-type dielectric guide.

Most work concerning this problem has employed ap-
proximate methods such as perturbation or coupled-mode
theory [1]. However, only a few investigations in terms of
the full-wave theory have appeared so far on finite peri-
odic structures [2]-[5]. In this paper, we deal with finite
periodic notches in a ground plane covered by a dielectric
slab, which is a natural extension of the single-notch case
[6]. Similar structures have already been treated by other
researchers in connection with a mode launcher or a
dielectric image line-array antenna [7] as well as a grating
coupler [8]. However, their analyses have been based on
approximate methods, such as the equivalent-circuit repre-
sentation calculated by a plane resonator model [7] and the
second-order perturbation theory [8}. The end effect taking
place near z =0 and z= (N —1)D in Fig. 1 has also been
neglected. The major motivation of the present analysis
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Fig. 1. Geometry of the problem.

stems from an interest in making clear the surface-wave
scattering by the discontinuities due to the finite periodic
notches. This structure is simple but of great importance in
practical application to mode filters or leaky wave anten-
nas. This is because the discontinuities can be enhanced by
adjusting the depth of the notches appropriately; hence, an
effective conversion to reflected or radiated waves may be
expected for a small number of notches.

In this paper, we propose a new numerical method
based on the spectral-domain analysis, combined with the
sampling theorem, in order to treat finite periodic struc-
tures. The basic idea of the present method is to band-limit
a widespread spectral function in the spectral domain by a
convolution integral, with the sampling function as a
weighting function in relation to a finite length in the
space domain [9)]. Thus, the sampling theorem ensures that
the final equation to be solved can be discretized in the
spectral domain for numerical calculations. This new -
method has already been applied successfully to the in-
finite periodic structure of a plane grating [10], [11]. How-
ever, in this case, Floquet’s theorem can be applied, and
hence it is sufficient to consider only one period. In the
case of a finite structure, on the other hand, the numerical
analysis is more cumbersome since we have to take each
period into account separately. It is shown that the new
method can also be applied to a fairly large number of
periodic notches by use of an iterative computation.

II. FORMULATION

Fig. 1 shows the geometry of the problem, where the
structure is uniform in the y direction. Finite periodic
notches of width 2w and depth d are spaced a distance D
from each other with center at

z=nD (n=012,---,N—1) (1)

where N is the number of notches. We consider here only
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the TE excitation in order to minimize the details. In this
case, Maxwell’s equations can be written as follows:

a2 a2
(W'F??—Z—z-*-lclz Ey(x,z) 0 (2)
k, = wy€ iy (i=0’1’2) (3)

where i=0, 1, and 2 corresponds, respectively, to free
space, the dielectric layer above the ground plane, and the
notches. Also,

1 0E, j OE
H,H)= =L, = 4
(H,, H,) (jwuo 3z~ wpg Hx) (4)

In these equations, the time dependence e/’ is assumed,
and all the other field components are zero.

The incident wave is a dominant TE surface wave mode
given by

Ei(x,2) = N({)erot=p e (x>b)
N sin kx e 0 ) (5
- N(§) e (0<x<b) (5)

{=4

where §, is the propagation constant of the dominant
mode. The propagation constants, including higher modes,
are determined by

G($,)=0 (s=1,2,---, M) (6)

where M is the number of surface wave modes supported
on the left uniform waveguide. The kernel function is
defined by

G(¢) = jko+ kcot kb

ko=\,/"(2)“7§2

k=\k2—¢2.

(7)

where

(8)
These functions will be used in the subsequent analyses.
Moreover, the normalization factor is defined by

2 jwpokysin? kb \
)
where unit incidence from the left is assumed.

The total (¢) field are given by the sum of the incident
(i) and scattered (s) fields as follows:

(E', H') = (E', H')+(E°, H"). (10)

According to this definition, the boundary conditions can
be summarized as follows:

(B1)
(B2)
(B3)

N(§S)=( (9)

$=£

radiation condition,

continuity of E and H; at x=b,

continuity of E; at the apertures of the notches
(otherwise E; =0 at x =0),

(B4) continuity of H} at the aperture of the notches.

To summarize, the present problem is to find the
scattered fields which obey (2)—(4) subject to the boundary
conditions (B1)—(B4). '
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III. SPECTRAL-DOMAIN ANALYSIS

In the following discussions, we use the Fourier and its
inverse transformation of the form

16)= " 1(z)ebds

1) =5 Jr()ye &t (1)

where f(z) is the original function and f({) is its Fourier
transform. The infinite contour ¢ of the inverse Fourier
transformation should be in the strip (Imk, <{ < —Im«k,)
resulting from the assumption that free space has a vanish-
ingly small loss (Im«,<0). However, we let Imk,— 0
when the analyses are completed.

Direct Fourier transformation of (2) leads to an ordinary
differential wave equation for which solutions are well
known. After straightforward but somewhat lengthy
manipulations, we can express the Fourier transform of
the scattered field above the ground plane in the form

k
s _ s T ke(x-b)
Ej(x,$) Ey(o’g)sinkbG(f)e (x>b)
£:(0.) k sin kx sink(b— x)
= s -+
708 sin® kbG () sin kb

(0<x<b). (12)

It should be noted that (12) satisfies boundary conditions
(B1) and (B2); (B1) may be satisfied if we choose the
branch of k, appropriately, and (B2) can be conformed
directly from (12) and its derivative with respect to the x
coordinate in connection with (4).

Now, expanding the fields in the notches in terms of
waveguide modes with unknown coefficients 4,,, we de-
fine the total electric field for x <0 by

ny?

o]
El(x,z)=e /P 3 74, sin[w,(z—nD+w)]

v=1
siny, (d + x)
siny,d
for —d<x<0,nD—w<z<nD+w,
and »=0,1,2,---,N—1
=0 (13)

where the term e /1"? has been added only for computa-
tional convenience, and

otherwise

w,=va/2w  (r=1,23,---)
Y=y (14)
Then, the Fourier transform of (13) is given by
et it siny, (d + x
E;(x,f) =W Z e!(ﬁ'*fl)nD Z Am’F;’({)_llj(—)
n=0 v=1 siny,d
(—d<x<0) (15)
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where
sin($w —vwr/2)

[(ew)>= (/2]

It is worth noting that EJ(0,{) used in (12) should be
equal to (15) when x = 0; that is,

N-1 00
E50.6) =w T /S50 T 4, B ().

F(§)=vm (16)

(17)

This relation ensures boundary condition (B3) because the
electric field of the incident surface wave always vanishes
on the ground plane.

We employ here the spectral-domain method in order to
satisfy the remaining boundary condition (B4). From (4),
the Fourier transform of the tangential component of
magnetic fields for x > 0 and x <0 is given by the deriva-
tive of respectively, (12) and (15) with respect to the x
coordinate. On the other hand, that corresponing to only
one notch aperture can be obtained by the convolution of
the above-mentioned Fourier transform and a sampling
function. As a result, (B4) regarding the mth notch aper-
ture is expressed in the spectral domain as follows:

T

1 a )
—gJtmD / S [Es(+0.0) = E}(-0,0)] (1= §)e /P dr

mD+w 0
= (" i 1(0,z) e/ dz
mD - w dx
(m=0,1,---

where the sampling function is defined by

,N-1) (18)

(19)

Combining (5), (12), and (15) with (18), we can rearrange
(18) in the form

1 N1 ] 0 . )
— L e Y 4, [G(DE()S(1=§)e P dr
T n=0 v=1 €

- L B R G) =2

S(§ -%) (20

where

wk?
G($)sin” kb
B, =wy,coty,d.

G(¢) = — kw cot kb

(21)
Thus, the present problem can be said to be solved if the

unknown model coefficients are determined so that (20)
may be satisfied.

IV.

According to the sampling theorem, (20) can be dis-
cretized in the following manner. First, substitute { = + w,
into (20). Second, add and subtract the resulting two
equations when p is odd and even, respectively. Then,

INVERSE FOURIER TRANSFORMATION
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after some algebraic manipulations, we have
N-1
Z e—‘jgl(n mb Z AnVI(m n; u,v) 2 Z Anv 4 p,u
n=0 p=1 P ==
2N v F 0,1
- (§)51nkb u(g‘)l§=§1 (m_ ’ ,"',N_l)
(22)
where §,, is the Kronecker 8, and

I(m,n;p,v) =—2jw Y Res[G(§)] E(&)F,(5) {55 )

s=1
2W 0 .
x¢(n—m)D+ ;p-zpfo G(t)F,(1)

><F.(t){cos

jsin

}t(n —m)Ddt
(23)

where cos and jsin correspond to the cases where » + p is
even and odd, respectively. In this derivation, we have
finally let Im k, — 0, and so residue calculus and Cauchy’s
principal value have appeared. In general, integration_ in
(23) should be performed numerically. For |n — m|k,D >
1, however, it can be calculated with good accuracy by
means of the saddle point method (see Appendix I).

Since (22) constitutes infinite sets of algebraic equations
with respect to the unknown modal expansion coefficients
A,,, we can solve these linear equations numerically by
truncating the modal numbers appropriately. In numerical
calculations, however, a successive iterative method is
needed in order to reduce the dimension of matrices,
especially for a large number of notches. Once these coeffi-
cients are determined, all the physical quantities can be
obtained by applying the Fourier inverse transformation to
(12) together with (17).

By use of residue calculus, the reflection and transmis-
sion coefficients of the excited surface waves on the left
and right waveguide, respectively, are given by

E;0, = k?cos kb sin kb
R,=—j A0 -8 : (24)
N($,)8,  [kbcoskb—sinkb]|, _,
T Emf) k2 cos kb sin kb
*T TIN(E)E,  [kb cos kb —sin kb] (s

(s=1,2,---, M). (25)

On the other hand, the radiative far field is easily calcu-
lated by applying the saddle point method to the inverse
Fourier transformation. As a result, the radiation power
density is defined by

E(0.5)k |

P(0)—s 20 m (26)

277

¢ =rgcosd
where 6 indicates the angle of the observation point with

respect to the z axis. The total radiation power is related
to the aforementioned density by

Rrad=/0ﬂP(0)d0. (27)
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Fig. 2. Reflected, transmitted, and radiated powers versus the number
N of the notches near Bragg reflection. k6 =197, ¢ /¢; =€, /¢q = 3.0,
D/b=1.1859, d/w=10.8008, and w/D = 0.25.

Since the unit incidence from the left has been considered,
the power relation should be

(28)

where the first and the second term denote the total
reflection and the transmission power, respectively.

M 2 M 2
Z le| + Zln‘ +Prad=1
s=1 s=1

V. NUMERICAL EXAMPLES

As mentioned in the Introduction, the investigation of
surface-wave scattering by a finite periodic structure is
important in connection with mode filters as well as leaky
wave antennas. In this section, we show some numerical
results. Fig. 2 shows the variation of the reflected power
P, transmitted power P,, and radiated power P, versus
the number N of notches. The parameters with respect to
the dimension are chosen such that when the normalized
frequency is selected as kyb=2.0, the Bragg reflection
condition based on first-order perturbation theory [1] may
be satisfied, that is, {; D = =, and each notch may behave
as a quarter-wave matching circuit, that is, v,d = 7/4.
Although the normalized frequency is somewhat different
from the above-mentioned point (kb =1.97+ 2.0), maxi-
mum reflection is observed. This is why the phase constant
of the mode supported on the periodic structure [12]
satisfies the condition, that is, 8, D = =, as described later.
The reflected power increases monotonically with the
number of notches, amounting to 98.87 percent for N = 50,
whereas the transmitted and radiated powers are very
small, 0.36 percent and 0.75 percent, respectively.

Fig. 3 shows the variation of the radiated, transmitted,
and reflected powers versus the number of notches. The
parameters used are much the same as those in Fig. 2
except for the normalized frequency; that is, xyb = 3.26.
At this normalized frequency, as described later, the peri-
odically notched dielectric guide can support a surface
wave mode with a phase constant for which the Bragg
radiation condition, 8,D =k Dcosf + 2=, is satisfied for
real . When N = 50, the radiation power amount to 96.94
percent, while the transmitted and reflected powers are,
respectively, 0.13 percent and 2.93 percent.

Fig. 4 shows the variation of the moduli of the reflection
and transmission coefficients versus the normalized
frequency. It is seen that the greater the number of notches,
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Fig. 3. Radiated, transmitted, and reflected powers versus the number
N of the notches near maximum radiation. kyb =326, €, /¢5 =¢, /¢,
=3.0, D/b=1.1859, d/w=10.8008, and w/D = 0.25.
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Fig. 4. Reflection and transmission coefficients versus the normalized
frequency kb near Bragg reflection for (a) N =10, (b) N =30, and (¢)
N=350. ¢ /eg=¢€,/€4=30, D/b=1.1859, d/w = 0.8008, and w /D
=0.25.

the more sensitive the reflectivity becomes with respect to
the normalized frequency. The parameters used are chosen
to satisfy the Bragg condition based on first-order per-
turbation theory at kb =2.0, as shown in Fig. 2. How-
ever, numerical results show that maximum reflection oc-
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Fig. 5. Radiation power density versus observation angle § near maxi-
mum radiation for (a) N =10, (b) N =30, and (¢) N =50. x,b=3.26,
€ /€0 =¢€,/€5=3.0, D/b=1.1859, d/w =0.8008, and w/D = 0.25.

curs at a slightly different frequency. This noticeable fea-
ture may be considered to reflect the fact that the corru-
gation is so strong that the Bragg condition based on
first-order perturbation theory does not hold for these
numerical examples. For example, when k,b=1.97, the
propagation constant of the perturbed waveguide mode is
calculated as §{,D =3.1415-0.0586, (see Appendix II),
whereas that of the unperturbed one is {; D = 3.0732. Thus,
we can closely estimate the maximum reflection point by
applying the Bragg condition to the phase constant B,
rather than {;.

Fig. 5 show the variation of the radiation power density
P(0) versus the observation angle 6. The parameters used
are coincident with those in Fig. 3. In this case, the
propagation constants of the unperturbed and perturbed
waveguides are given by {; D =5.9719 and {,D = 6.0323 —
0.0128;, respectively. As a result, the Bragg condition
reveals that using {, in an approximate sense, maximum
radiation occurs at 8 = 94.6°, whereas using f,, it occurs
at 6 =93.7°. In fact, numerical results show that it takes
place at 8 = 93.0° with the peak power density P(6) =16.34
(=12.12 dB) for N=50. It is found from the numerical
examples that we can estimate the direction of the maxi-
mum radiation more accurately by using not the phase
constant {; but B,.

VI. CONCLUSIONS

We have analyzed rigorously the surface-wave scattering
by finite periodic notches loaded in a ground plane. The
analytical method is based on the spectral-domain analysis
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combined with the sampling theorem. In the numerical
calculations, we have employed an iterative method in
order to reduce the dimension of the matrices, enabling us
to treat a fairly large number of notches. Numerical calcu-
lations were made concentrating on the maximum reflec-
tion or radiation. In all the numerical examples given, the
power relation (28), which can be considered a check of
the accuracy, was fulfilled to within 0.5 percent. From the
numerical results, it has been found, that the Bragg condi-
tion based on first-order perturbation theory cannot pre-
dict the maximum reflection or radiation precisely because
of the strong corrugation.

In this paper, we have treated only TE excitation, but
the method can also be applied to the TM case. This
problem deserves further attention.

" APPENDIX I
SADDLE POINT METHOD

When (m — n)xy,D > 1, application of the saddle point
method to (23) yields

I(m,n;p,v) =-2jw Y, Res[G(§)] E(8)E(8,)

s=1
X e (m—n)D +2j2igw (k2 — k3 )w?
X ﬂ(“o)ﬂ("o)eﬂjnow

x I[(¢&,(m—n)D/w—2)
(A1)

where

£=wyk2sin’ kb + k2 cos?r;b . (A2)

The integral I along the branch cut is given by

U

{ Kow — A F~(\[2B(x0w - A)/'n')e_f"’B

—~ Jkow + A F(2B(xqw + 4) /7 )e*7}  (A3)
where we have used the Fresnel function of the form

F(x) = [Teim i ar. (A4)
X
It should be pointed out that (Al) gives us an accurate
value even near a cutoif frequency.
When (n — m)k,D > 1, the final result can be expressed
by use of (Al) as follows:

I(m,nyp,v)=(=1)"""I(n,m;p,v).  (AS5)
APPENDIX 11
CHARACTERISTIC EQUuATION

The propagation constant §; of the mode supported on a
periodically notched waveguide is given by the zero of the
characteristic equation which is formally obtained from
(20) in the following way. Let the right-hand side of (20)
be zero, put §, —§,, and consider the summation with
respect to n from —oo to +oo. Then, by use of the
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Poisson summation formula, we have

2 = 4
5 24, X G+ D)EE+D)S(Eo+ D =¢)

y=1 n=—0o0

- L A,BE({)=0 (AS6)
p=1

where Floquet’s theorem has been taken into account; that
is, A,, > A, independent of the notch number n, and

D,=2an/D. (A7)

Based on the sampling theorem, (A6) can be discretized in
the same way as the derivation of (22) as follows:

) {};— S G5+ DIE(+D,)

v=1 n=-—0co
XF,($,+ D,)— B,,al“,}A,,=0 (p=1,2,3,---). (A8)

As a result, {, can be determined in such a way that the
determinant of (A8) should be zero. In general, {, is given
by a complex number; its real part is the phase constant 3,
of the mode, and the imaginary part corresponds to the
attenuation constant.
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