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Numerical Analysis of Surface-Wave Scattering
by Finite Periodic Notches in a Ground

Plane

KAZUNORI UCHIDA, MEMBER, IEEE

Abstract — Surface-wave scattering by finite periodic notches loaded in a

ground plane is investigated in terms of a full-wave theory. The analytical

method presented is based on a spectral-domain analysis where the smn-

pling theorem is applied in order to discretize the final equation to be

solved. Nnmerical calculations are earned out for reflected, transmitted,

and radiated waves. The numerical results show that maximnm reflection

and radiation occur at frequencies somewhat different from those expected

from the Bragg condition based on a first-order perturbation theory.

I. INTRODUCTION

P,ERIODIC LOADING in various kinds of waveguides

exhibits an interesting phenomenon called Bragg dif-

fraction. Because of the nonuniform nature of the guides,

mode conversion into various other modes occurs. When

the periodicity is chosen such that the Bragg condition is

satisfied for two specific modes, the mode conversion

between them is prominent while that between any others

is negligibly small. Therefore, if one of them is an incident

surface wave and the other is a reflected wave, the mecha-

nism suggests the possibility of devising an effective mode

filter by such periodic loading of the dielectric guide. For

an effective leaky wave antenna, the situation is much the

same if the second mode is the radiation field with regard

to an open-type dielectric guide.

Most work concerning this problem has employed ap-

proximate methods such as perturbation or coupled-mode

theory [1]. However, only a few investigations in terms of

the full-wave theory have appeared so far on finite peri-

odic structures [2]–[5]. In this paper, we deal with finite

periodic notches in a ground plane covered by a dielectric

slab, which is a natural extension of the single-notch case

[6]. Similar structures have already been treated by other

researchers in connection with a mode launcher or a

dielectric image line-array antenna [7] as well as a grating

coupler [8]. However, their analyses have been based on

approximate methods, such as the equivalent-circuit repre-

sentation calculated by a plane resonator model [7] and the

second-order perturbation theory [8]. The end effect taking

place near z = O and z = (N – l)D in Fig. 1 has also been

neglected. The major motivation of the present analysis
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Fig. 1. Geometry of the problem.

stems from an interest in making clear the surface-wave

scattering by the discontinuities due to the finite periodic

notches. This structure is simple but of great importance in

practical application to mode filters or leaky wave anten-

nas. This is because the discontinuities can be enhanced by

adjusting the depth of the notches appropriately; hence, an

effective conversion to reflected or radiated waves may be

expected for a small number of notches.

In this paper, we propose a new numerical method

based on the spectral-domain analysis, combined with the

sampling theorem, in order to treat finite periodic struc-

tures. The basic idea of the present method is to band-limit

a widespread spectral function in the spectral domain by a

convolution integral, with the sampling function as a

weighting function in relation to a finite length in the

space domain [9]. Thus, the sampling theorem ensures that

the final equation to be solved can be discretized in the

spectral domain for numerical calculations. This new

method has already been applied successfully to the in-

finite periodic structure of a plane grating [10], [11]. How-

ever, in this case, Floquet’s theorem can be applied, and

hence it is sufficient to consider only one period. In the

case of a finite structure, on the other hand, the numerical

analysis is more cumbersome since we have to take each

period into account separately. It is shown that the new

method can also be applied to a fairly large number of

periodic notches by use of an iterative computation.

II. FORMULATION

Fig. 1 shows the geometry of the problem, where the

structure is uniform in the y direction. Finite periodic

notches of width 2 w and depth d are spaced a distance D

from each other with center at

z=nD (n=0,1,2,-..,1)l) (1)

where N is the number of notches, We consider here only
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the TE excitation in order to minimize the details. In this

case, Maxwell’s equations can be written as follows:

(-a2 (?2 )‘+K; ~y(x, z) =()
dx2 + 8Z2

(2)

icl=u~ (i=olz)7> (3)

where i = O, 1, and 2 corresponds, respectively, to free

space, the dielectric layer above the ground plane, and the

notches. Also,

( )(HX,H2)= &.g,--&.g . (4)

In these equations, the time dependence eJm’ is assumed,

and all the other field components are zero.

The incident wave is a dominant TE surface wave mode

given by

E;(x, z) = N({)e-J~O(’-~)-J(zlI ={, (x> b)

sin kx
=N({)=e-Jr2 (o<x<b) (5)

.?=(,

where {1 is the propagation constant of the dominant

mode. The propagation constants, including higher modes,

are determined by

G(~,)=O (s=1,2,.00, M) (6)

where J4 is the number of surface wave modes supported

on the left uniform waveguide. The kernel function is

defined by

G({) =jkO+kcotkb (7)

where

k.= {~

k={~. (8)

These functions will be used in the subsequent analyses.

Moreover, the normalization factor is defined by

( )2 jcopoko sin2 kb 1’2
N({,) =

J(1+ jkob) ~=f$
(9)

where unit incidence from the left is assumed.

The total (t) field are given by the sum of the incident

(i) and scattered (.s) fields as follows:

(Ef, Hf) = (E’, H’)+(E’, HS). (lo)

According to this definition, the boundary conditions can

be summarized as follows:

(Bl) radiation condition,

(B2) continuity of E; and H; at x = b,

(B3) continuity of E; at the apertures of the notches

(otherwise E;= Oat x = O),

(B4) continuity of H: at the aperture of the notches.

To summarize, the present problem is to find the

scattered fields which obey (2)–(4) subject to the boundary

conditions (B1)–(B4).

III. SPECTRAL-DOMAIN ANALYSIS

In the following discussions, we use the Fourier and its

inverse transformation of the form

f({) = I’mf(z)e’(zdz
J–m

j_(z) =-# Jf(oe-’{zd( (11)
c

where j(z) is the original function and j(() is its Fourier

transform. The infinite contour c of the inverse Fourier

transformation should be in the strip (Im K. < ( < – Im Ko)

resulting from the assumption that free space has a vanish-

ingly small loss (Im K. < O). However, we let Im K. + O

when the analyses are completed.

Direct Fourier transformation of (2) leads to an ordinary

differential wave equation for which solutions are well

known. After straightforward but somewhat lengthy

manipulations, we can express the Fourier transform of

the scattered field above the ground plane in the form

[

k sin kx
=E;(O, {)

sink(b–x)

sin2kbG({) + sin kb 1
(O<x< b). (12)

It should be noted that (12) satisfies boundary conditions

(Bl) and (B2); (Bl) may be satisfied if we choose the

branch of k. appropriately, and (B2) can be conformed

directly from (12) and its derivative with respect to the x

coordinate in connection with (4).

Now, expanding the fields in the notches in terms of

waveguide modes with unknown coefficients A ~V, we de-

fine the total electric field for x <0 by

sinyU(d +x)
x

sin yvd

for–d<x <O, nD–w<z<nD+ w,

and n=(),l,2,. ..,]-]

=0 otherwise (13)

where the term e ‘JKI*D has been added only for computa-

tional convenience, and

WV= VTr/2W (v=1,2,3,... )

FYv= K2– WV. (14)

Then, the Fourier transform of (13) is given by

(-d<x<O) (15)
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where

sin (1w – VT/2)
F,({) = v7r

[(Jw)2-(v*/2)2] “
(16)

It is worth noting that EJO, r) used in (12) should be

equal to (15) when x = O; that is,

N–1

EJ(O, {) = w ~ e~({-fl)”D ~ A., F,({). (17)
~=Q ~=1

This relation ensures boundary condition (B3) because the

electric field of the incident surface wave always vanishes

on the ground plane.

We employ here the spectral-domain method in order to

satisfy the remaining boundary condition (B4). From (4),

the Fourier transform of the tangential component of

magnetic fields for x >0 and x <0 is given by the deriva-

tive of respectively, (12) and (15) with respect to the x

coordinate. On the other hand, that corresponding to only

one notch aperture can be obtained by the convolution of

the above-mentioned Fourier transform and a sampling

function. As a result, (B4) regarding the mth notch aper-

ture is expressed in the spectral domain as follows:

J
mD+w=_ 2Ei(0, z)e’(=dz

mD-w ax y
(m= O,l,...,1)l) (18)

where the sampling function is defined by

sin xw
s(x)’—

x“
(19)

Combining (5), (12), and (15) with (18), we can rearrange

(18) in the form

where

wk 2
G(t) = – kw cot kb

G(J) sin2kb

B,= wy,cot yvd. (21)

Thus, the present problem can be said to be solved if the

unknown model coefficients are determined so that (20)

may be satisfied.

IV. INVERSE FOURIER TRANSFORMATION

According to the sampling theorem, (20) can be dis-

cretized in the following manner. First, substitute J = + WP

into (20). Second, add and subtract the resulting two

equations when p is odd and even, respectively. Then,

after some algebraic manipulations, we have

= -2N(J) &Fp(O{=rl (m= O,l,...,1)l)

(22)

where 8PVis the Kronecker 8, and

X%(t) {~’&} t(n-m)Ddt

(23)

where cos and j sin correspond to the cases where v + p is

even and odd, respectively. In this derivation, we have

finally let Im ICo~ O, and so residue calculus and Cauchy’s

principal value have appeared. In general, integration. in

(23) should be performed numerically. For In – nZlKoD >

1, however, it can be calculated with good accuracy by

means of the saddle point method (see Appendix I).

Since (22) constitutes infinite sets of algebraic equations

with respect to the unknown modal expansion coefficients

A ,,U, we can solve these linear equations numerically by

truncating the modal numbers appropriately. In numerical

calculations, however, a successive iterative method is

needed in order to reduce the dimension of matrices,

especially for a large number of notches. Once these coeffi-

cients are determined, all the physical quantities can be

obtained by applying the Fourier inverse transformation to

(12) together with (17).

By use of residue calculus, the reflection and transmiss-

ion coefficients of the excited surface waves on the left

and right waveguide, respectively, are given by

.E;(o, –L) k2 cos kb sin kb

‘s= – J N(~,)f, “ [kbcoskb-sinkb] ~={ ’24)
s

E;(O>L) k 2cos kb sin kb
T,=–j

N({,)i, “ [kbcoskb –sinkb] {=(
.!

(s=1,2,..., IW). (25)

On the other hand, the radiative far field is easily calcu-

lated by applying the saddle point method to the inverse

Fourier transformation. As a result, the radiation power

density is defined by

where 6 indicates the angle of the observation point with

respect to the z axis. The total radiation power is related

to the aforementioned density by

R,ad=@O)d& (27)
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Fig. 2. Reflected, transmitted, and radiated powers versus the number
N of the notches near Bragg reflection. KOb = 1.97, q/Co = cz /f. = 3.0,
D/b =1.1859, d/w = 0.8008, and w/D= 0.25.

Since the unit incidence from the left has been considered,

the power relation should be

(28)
~=1 ~=1

where the first and the second term denote the total

reflection and the transmission power, respectively.

V. NUMERICAL EXAMPLES

As mentioned in the Introduction, the investigation of

surface-wave scattering by a finite periodic structure is

important in connection with mode filters as well as leaky

wave antennas. In this section, we show some numerical

results. Fig. 2 shows the variation of the reflected power

P,, transmitted power Pt, and radiated power P,,~ versus

the number N of notches. The parameters with respect to

the dimension are chosen such that when the normalized

frequency is selected as KolI = 2.0, the Bragg reflection

condition based on first-order perturbation theory [1] may

be satisfied, that is, {ID= IT, and each notch may behave

as a quarter-wave matching circuit, that is, yld = 77/4.

Although the normalized frequency is somewhat different

from the above-mentioned point (Kob = 1.97 + 2.0), maxi-

mum reflection is observed. This is why the phase constant

of the mode supported on the periodic structure [12]

satisfies the condition, that is, &D = n-, as described later.

The reflected power increases monotonically with the

number of notches, amounting to 98.87 percent for N = 50,

whereas the transmitted and radiated powers are very

small, 0.36 percent and 0.75 percent, respectively.

Fig. 3 shows the variation of the radiated, transmitted,

and reflected powers versus the number of notches. The

parameters used are much the same as those in Fig. 2

except for the normalized frequency; that is, Kob = 3.26.

At this normalized frequency, as described later, the peri-

odically notched dielectric guide can support a surface

wave mode with a phase constant for which the Bragg

radiation condition, ~. D = KOD cos f3+ 2 T, is satisfied for

real 0. When N = 50, the radiation power amount to 96.94

percent, while the transmitted and reflected powers are,

respectively, 0.13 percent apd 2.93 percent.

Fig. 4 shows the variation of the moduli of the reflection

and transmission coefficients versus the normalized

frequency. It is seen that the greater the number of notches,

tp
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Fig. 3. Radiated, transmitted, and reflected powers versus the number
N of the notches near maximum radiation. K. b = 3.26, c1/(0 =(2/c.
= 3.0, D/b =1.1859, ~/W= 0.8008, and w/D= 0.25.

I1.0 --., ~-.
.

‘. “iTl‘.. /“--—.

L

05

In

IR[

N.10

o~+llil !ll!l(l il!jlillllt!l> %b

1.85 19 195 20 205 21

(a)

10 - -,. , ,., /-. _,--
‘-, ,

\

L ,
,

05 - 1, N,30 ; IRI,
!{
\’
\ ,’
\ .-,

0 ..$1$
rt,b

1.85 19 195 20 205 21

(b)

05

0
185 19 1,95 20 205 21

(c)

Fig. 4. Reflection and transmission coefficients versus the normalized
frequency .0 b near Bragg reflection for (a) N = 10, (b) N = 30, and (c)
N = 50. 61/<0 = e2/co = 3.0, D/b =1.1859, d/w= 0.8008, and w/D
= 0.25.

the more sensitive the reflectivity becomes with respect to

the normalized frequency. The parameters used are chosen

to satisfy the Bragg condition based on first-order per-

turbation theory at Kob = 2.0, as shown in Fig. 2. How-

ever, numerical results show that maximum reflection oc-
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90” combined with the sampling theorem. l[n the numerical

calculations, we have employed art iterative method in

order to reduce the dimension of the matrices, enabling us

to treat a fairly large number of notches. Numerical calcu-

lations were made concentrating on the maximum reflec-

18 0“ tion or radiation. In all the numerical examples given, the
-40 -20 0 20dB power relation (28), which can be considered a check of
(a) the accuracy, was fulfilled to within 0.5 percent. From the

90” numerical results, it has been found, that the Bragg condi-

e~

tion based on first-order perturbation theory cannot pre-

dict the maximum reflection or radiation precisely because

of the strong corrugation.

In this paper, we have treated only TE excitation, but

the method can also be applied to the TM case. This
180’ o“

-40 -20 0 20 dB problem deserves further attention.

(b)

APPENDIX I

SADDLE POINT METHOD

When (m – n )KOD >>1, application of

\
method to (23) yields

9V

1m v
-40 -20 0 20dB

(c)

Fig. 5. Radiation power density versus observation angle 0 near maxi-
mum radiation for (a) N = 10, (b) N = 30, and (c) N = 50. Kob = 3.26,

~1/~o = Ez/co = 3.0, D/b =1.1859, d/w = 0.8008, and w/D = 0.25.

curs at a slightly different frequency. This noticeable fea-

ture may be considered to reflect the fact that the corru-

gation is so strong that the Bragg condition based on

first-order perturbation theory does not hold for these

numerical examples. For example, when Kob = 1.97, the

propagation constant of the perturbed waveguide mode is

calculated as 10D = 3.1415 – 0.0586j (see Appendix II),

whereas that of the unperturbed one is {ID = 3.0732. Thus,

we can closely estimate the maximum reflection point by

applying the Bragg condition to the phase constant /?O

rather than {l.

Fig. 5 show the variation of the radiation power density

P( 13) versus the observation angle 6. The parameters used

are coincident with those in Fig. 3. In this case, the

propagation constants of the unperturbed and perturbed

waveguides are given by IID = 5.9719 and {OD = 6.0323 –

0.0128j, respectively. As a result, the Bragg condition

reveals that using (1 in an approximate sense, maximum

radiation occurs at 8 = 94.6°, whereas using 130, it occurs

at Os 93.7°. In fact, numerical results show that it takes

place at O = 93.0° with the peak power density P(8)= 16.34

( = 12.12 dB) for N= 50. It is found from the numerical

examples that we can estimate the direction of the maxi-

mum radiation more accurately by using not the phase

constant {1 but /lO.

VI. CONCLUSIONS

We have analyzed rigorously the surface-wave scattering

by finite periodic notches loaded in a ground plane. The

analytical method is based on the spectral-domain analysis

the saddle point

I(wz,n;p,v)= -2jw 5 Res[~({,)] Fp({~)~({,)
~=1

2,Xe–~r’(m –n)D+2j~rcow(Kf –ICo W2

x ~p(Ko)~v(Ko)e-’j’~W

xi($, (?n-n)D/w -2)

where

(Al)

(A2)

where we have used the Fresnel function of the form

F(x) = Jme-jm’2/2 d.
x

(A4)

It should be pointed out that (Al) gives us an accurate

value even near a cutoff frequency.

When (n – m)KoD >>1, the final result Cm be expressed

by use of (Al) as follows:

I(m,rz;p,v)=(-l)p+’qn, rn;p,v). (A5)

APPENDIX 11

CHARACTERISTIC EQUATION

The propagation constant (0 of the mode supported on a

periodically notched waveguide is given by the zero of the

characteristic equation which is formally obtained from

(20) in the following way. Let the right-hand side of (20)

be zero, put {I ~ JO, and consider the summation with

respect to n from – co to + co. Then, by use of the
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Poisson summation formula, we have

where Floquet’s theorem has been taken into account; that

is, Anv ~ Av independent of the notch number n, and

D.= 2vn/D. (Al)

Based on the sampling theorem, (A6) can be discretized in

the same way as the derivation of (22) as follows:

1xF.(L)+Dn)–Bp8pxA,=O (p=l,2,3,. o.). (A8)

As a result, {0 can be determined in such a way that the

determinant of (A8) should be zero. In general, JO is given

by a complex number; its real part is the phase constant l?O

of the mode, and the imaginary part corresponds to the

attenuation constant.
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